Penghasilan dan penggunaan PCB seramik
Dihantar pada 2020-03-03Pengeluaran dan aplikasi Pengilang PCB Seramik
Ceramic substrate refers to a special process board where copper foil is directly bonded to the surface (single-sided or double-sided) of alumina (Al2O3) or aluminum nitride (AlN) ceramic substrate at high temperature. The manufactured ultra-thin composite substrate has excellent electrical insulation properties, high thermal conductivity, excellent solderability and high adhesion strength, and can etch out various patterns like a PCB board, and has a large current carrying capacity. ability. Therefore, ceramic substrates have become the basic materials for high-power power electronic circuit structure technology and interconnection technology.
Features: strong mechanical stress, stable shape; high strength, high thermal conductivity, high insulation; strong binding force, anti-corrosion.
Good thermal cycling performance, with 50,000 cycles, high reliability.
Like PCB board (or IMS substrate), it can etch a variety of graphic structures; no pollution, no pollution.
The operating temperature is wide -55 ℃ ~ 850 ℃; the thermal expansion coefficient is close to silicon, which simplifies the production process of power modules.
At this stage, there are five types of ceramic heat sink substrates: HTCC, LTCC, DBC, DPC, and LAM. HTCC \ LTCC all belong to the sintering process and the cost will be higher.
However, DBC and DPC are developed in China in recent years and are professional technologies for energy production. DBC uses high temperature heating to combine Al2O3 and Cu plates. The technical bottleneck is that it is difficult to solve the problem of micro pores between Al2O3 and Cu plates This makes the product’s mass production energy and yield rate more challenging, while DPC technology uses direct copper plating technology to deposit Cu on the Al2O3 substrate. Its process combines materials with thin film process technology. Its products are The most commonly used ceramic heat sink substrate in recent years. However, its ability to integrate material control and process technology is relatively high, which makes the technical threshold for entering the DPC industry and stable production relatively high. LAM technology is also known as laser rapid activation metallization technology.
1. HTCC (Keramik Bersuhu Suhu Tinggi)
HTCC juga disebut seramik multilayer bersuhu suhu tinggi. Proses pembuatannya sangat serupa dengan LTCC. Perbezaan utama ialah serbuk seramik HTCC tidak ditambah dengan bahan kaca. Oleh itu, HTCC mesti dikeringkan dan dikeraskan pada suhu tinggi 1300 ~ 1600 ℃. Embrio hijau kemudian digerudi dengan vias, dan lubang dan litar bercetak diisi dengan teknologi percetakan skrin. Oleh kerana suhu pembakaran bersama yang tinggi, pilihan bahan konduktor logam adalah terhad. Bahan utama adalah titik lebur yang tinggi tetapi konduktif. Walau bagaimanapun, logam dengan sifat buruk seperti tungsten, molibdenum, mangan, dll akhirnya dilaminasi dan disinter.
2.LTCC (Seramik Bersama Suhu Rendah)
LTCC juga dikenali sebagai substrat seramik berbilang lapisan bersuhu rendah. Teknologi ini mesti terlebih dahulu menambahkan serbuk alumina anorganik dan kira-kira 30% hingga 50% bahan kaca ditambah pengikat organik untuk menjadikannya sebati menjadi buburan, dan kemudian Pengikis digunakan untuk mengikis buburan menjadi bentuk kepingan, dan kemudian buburan lembaran dibentuk menjadi sekeping nipis embrio hijau melalui proses pengeringan, dan kemudian lubang melalui digerudi sesuai dengan reka bentuk setiap lapisan sebagai transmisi isyarat setiap lapisan. Litar dalaman LTCC Teknologi percetakan skrin digunakan untuk mengisi lubang dan litar bercetak pada embrio mentah. Elektrod dalaman dan luaran boleh dibuat dari perak, tembaga, emas dan logam lain. Akhirnya, lapisan dilaminasi dan diletakkan pada suhu 850 ~ 900 ° C. Penyinteran di dalam tungku peleburan dapat diselesaikan.
3. DBC (Tembaga Berikat Langsung)
Direct copper deposition technology uses copper’s oxygen-containing eutectic solution to directly apply copper to ceramics. The basic principle is to introduce an appropriate amount of oxygen between copper and ceramics before or during the bonding process, at 1065 ℃ ~ 1083. In the range of ℃, copper and oxygen form a Cu-O eutectic liquid. DBC technology uses this eutectic liquid to react with the ceramic substrate to generate CuAlO2 or CuAl2O4 phase on the one hand, and infiltrate the copper foil to achieve the combination of the ceramic substrate and the copper plate.
DPC production process of alumina and aluminum nitride ceramic substrates.